Pull to refresh
13
0
Александр @quverty

Специалист

Send message

Стивен Вольфрам: кажется, мы близки к пониманию фундаментальной теории физики, и она прекрасна

Reading time70 min
Views381K
В продолжение моего поста про вычислимую Вселенную я хочу представить вам свой перевод статьи Стивена Вольфрама, созданной в рамках его проекта The Wolfram Physics Project.


Неожиданное открытие


За прошедшие несколько веков произошел настоящий прорыв в наших знаниях о принципах работы окружающего нас мира. Но несмотря на это, у нас все еще нет фундаментальной теории физики, и мы все так же не имеем ответа на вопрос о том, как именно работает наша Вселенная. Я занимаюсь этой темой уже порядка 50-и лет, но только в последние несколько месяцев все кусочки пазла наконец-то начали складываться вместе. И получающаяся картина оказалась гораздо прекрасней, чем все, что я только мог себе представить.
Читать дальше →
Total votes 243: ↑238 and ↓5+307
Comments459

Книга «Программирование квантовых компьютеров. Базовые алгоритмы и примеры кода»

Reading time14 min
Views6.9K
image Привет, Хаброжители! Квантовые компьютеры спровоцировали новую компьютерную революцию, и у вас есть прекрасный шанс присоединиться к технологическому прорыву прямо сейчас. Разработчики, специалисты по компьютерной графике и начинающие айтишники найдут в этой книге практическую информацию по квантовым вычислениям, нужную программистам. Вместо штудирования теории и формул вы сразу займетесь конкретными задачами, демонстрирующими уникальные возможности квантовой технологии.

Эрик Джонстон, Ник Хэрриган и Мерседес Химено-Сеговиа помогают развить необходимые навыки и интуицию, а также освоить инструментарий, необходимый для создания квантовых приложений. Вы поймете, на что способны квантовые компьютеры и как это применить в реальной жизни. Книга состоит из трех частей: — Программирование QPU: основные концепции программирования квантовых процессоров, выполнение операций с кубитами и квантовая телепортация. — Примитивы QPU: алгоритмические примитивы и методы, усиление амплитуды, квантовое преобразование Фурье и оценка фазы. — Практика QPU: решение конкретных задач с помощью примитивов QPU, методы квантового поиска и алгоритм разложения Шора.
Читать дальше →
Total votes 10: ↑9 and ↓1+10
Comments3

Забытый криотронный компьютер Дадли Бака

Reading time12 min
Views8.1K
В 1950-х годах аспирант Массачусетского технологического института убеждал инженеров создавать компьютеры с использованием сверхпроводящих магнитных переключателей вместо ламп или транзисторов.

Изобретение Бака пережило творца. Более того, оно живо и по сей день: криотрон лежит в основе проектов IBM по созданию сверхпроводящих кубитов.

Тем не менее, десятилетия работы над криотроном затерялись на страницах истории компьютеростроения. Многие современные инженеры даже не слышали об этой технологии. Давайте поговорим о работе Бака и его ныне забытом криотронном компьютере.

Читать дальше →
Total votes 16: ↑16 and ↓0+16
Comments11

Квантовые вычисления в биоинформатике

Reading time38 min
Views11K
Квантовые компьютеры по определению могут решать множество задач экспоненциально быстрее, чем классические компьютеры. Нужно признать, что мы еще не достигли появления полезных квантовых вычислений, но когда мы сможем решить эту проблему, то извлеченная польза затронет почти все научные дисциплины. В этом обзоре мы рассмотрим, как современные квантовые алгоритмы могут сделать революцию в вычислительной биологии и биоинформатике.

От способности обрабатывать огромные объемы информации и намного эффективнее использовать алгоритмы машинного обучения, до алгоритмов квантового моделирования, которые могут улучшить вычисления (как по качественным, так и по количественным показателям) для дизайна новых лекарств, предсказания структуры белка, анализа различных процессов в биологическом организме и т.д. Эти захватывающие ум перспективы подвержены сегодня излишнему инфо хайпу, а значит важно обозначить предостережения и проблемы в этой новой технологии.

Предупреждение: в основе обзора статья группы европейских исследователей из Великобритании и Швейцарии (Carlos Outeiral, Martin Strahm, Jiye Shi, Garrett M. Morris, Simon C. Benjamin, Charlotte M. Deane. «The prospects of quantum computing in computational molecular biology», WIREs Computational Molecular Science published by Wiley Periodicals LLC, 2020). Самые сложные части статьи, связанные с изощренными математическими моделями не попадут в обзор. Но материал изначально сложный, от читателя требуются знания математики и квантовой физики.

Но если вы намерены начать изучать применение квантовых технологий в биоинформатике, то для того чтобы сначала въехать в тему, предлагается послушать небольшой доклад Виктора Соколова – старшего научного сотрудника M&S Decisions, в котором обозначаются некоторые современные проблемы моделирования лекарств:

Total votes 7: ↑6 and ↓1+7
Comments6

Квантовые вычисления и криптология

Reading time28 min
Views6K

Развитие вычислительной техники движется по различным направлениям, не ограничиваясь явлениями классической физики, электроники, оптики и теперь уже квантовой механики.
Ознакомление с проблемой квантовой криптологии и смежными, близкими к ней (не только по публикациям), показало, что имеют место определенные недостатки и пробелы в ее описании и представлении. Описывая конкретику того или иного физического явления, объекта, автор игнорирует его окружение даже ближайшее, оказывающее на объект непосредственное воздействие (часто возмущающее влияние). Это не упрек авторам, их право излагать так как они излагают. Это скорее мой мотив включиться в общий поток сознания. Материальная вещественная сторона квантовых явлений так или иначе проявляет себя и неучет ее, может сказаться существенным негативом. Что имеется ввиду? Материальная реализация квантовых компьютеров (КК), регистров, отдельных кубитов — всего того из чего КК сделаны. Обмен пользователей полученными результатами через сети связи и, наконец, защита, целостность и доступность таких результатов от нарушителя — тоже проблемы.
Читать дальше →
Total votes 11: ↑10 and ↓1+13
Comments2

Создайте свой собственный симулятор Q# — Часть 1

Reading time4 min
Views3.1K
Симуляторы — это особенно универсальная особенность QDK. Они позволяют вам выполнять различные задачи в программе на Q#, не меняя ее. Такие задачи включают симуляцию полного состояния, оценку ресурса или симуляцию трассировки. Новый интерфейс IQuantumProcessor позволяет очень легко создавать собственные симуляторы и интегрировать их в свои проекты на Q#.

Этот пост является первым в серии, посвященной этому интерфейсу. Мы начнем с реализации обратимого симулятора в качестве первого примера, который мы расширим в будущих публикациях в блоге. Обратимый симулятор может моделировать квантовые программы, которые состоят только из классических операций: X, CNOT, CCNOT (Toffoli gate) или произвольно управляемых X-операций. Поскольку обратимый симулятор может представлять квантовое состояние, присваивая одно булево значение каждому кубиту, он может запускать даже квантовые программы, состоящие из тысяч кубитов. Этот симулятор очень полезен для тестирования квантовых операций, которые оценивают булевы функции.

Читать дальше →
Total votes 8: ↑7 and ↓1+9
Comments1

Учимся квантовому программированию с помощью примеров. Доклад Яндекса

Reading time12 min
Views30K
Сегодня любой желающий может воспользоваться методами квантового программирования, написать простой код на Python и запустить его на реальном квантовом вычислителе. Ришат Ибрагимов rishat_ibrahimov разобрал основы квантовых вычислений на примерах с кодом, показал, как запускать программы на локальном симуляторе и удаленном квантовом компьютере.


— Всем привет, меня зовут Ришат. Я почти три года работаю над качеством поиска Яндекса. Но поговорить сегодня хочу не о работе, а о том, чем я занимаюсь в свободное время. Занимаюсь я квантовой информатикой, а на самом деле — самыми разными моделями вычислений, в том числе квантовыми.
Читать дальше →
Total votes 15: ↑14 and ↓1+16
Comments6

Непристойное приложение

Reading time10 min
Views10K


В приложении к статье путь частицы предоставлены вырезанные материалы: интегралы по траекториям, двухщелевой эксперимент на холодных атомах неона, кадры телепортации частиц и прочие сцены жестокости и сексуального характера.

Читать дальше →
Total votes 31: ↑31 and ↓0+31
Comments32

На пороге квантового сознания

Reading time7 min
Views7.5K
Предпосылки появления ИИ, превосходящего мозг человека:

  • закон Мура для квантовых компьютеров;
  • появление языков программирования для квантовых компьютеров;
  • квантовый компьютер похож на работу интуиции, воли и сознания человека — почти мгновенный перебор всех возможных вариантов решения задачи и выбор оптимального ответа;
  • запрет клонирования квантовых состояний аналогичен невозможности клонировать наше сознание;
  • квантовый ИИ должен дополнять классический ИИ, также как в мозге человека различные его структуры работают как единый механизм;
  • любой классический ИИ обучается решению только одной задачи и работает эффективнее человека только в узком сегменте деятельности. Так например, обученная модель ИИ лучше играет в шахматы, но при этом не способна делать что-либо другое. Квантовый ИИ должен тиражировать подходы к решению различных типов задач, ускоряя процесс обучения новой задачи.
Читать дальше →
Total votes 17: ↑4 and ↓13-6
Comments61

Самая реалистичная интерпретация квантовой механики

Reading time12 min
Views52K


В середине прошлого века при моделировании физических систем возникла концепция клеточных автоматов, порождающих удивительное многообразие из простых правил. Совершенно естественен соблазн обобщить подобными структурами фундаментальные законы природы. И, казалось бы, нарушение неравенств Белла закрыло подобным моделям путь в квантовую механику. Но только если не брать во внимание одну лазейку...

Читать дальше →
Total votes 25: ↑23 and ↓2+29
Comments185

Сколько кубитов нужно для квантового превосходства?

Reading time4 min
Views13K

Достигла компания Google квантового превосходства, или нет – это зависит от точки зрения


image

Теоретически квантовые компьютеры могут оказаться мощнее любого классического суперкомпьютера. Учёные пытаются подсчитать, что понадобится квантовым компьютерам для достижения т.н. «квантового превосходства», и на самом ли деле компания Google достигла этого превосходства, как она заявила в прошлом году.

Классические компьютеры для обозначения данных в виде нулей и единиц включают и выключают транзисторы. Квантовые компьютеры используют квантовые биты – кубиты, которые, благодаря странной природе квантовой физики, могут находиться в состоянии суперпозиции, одновременно обозначая и 1 и 0.

Суперпозиция позволяет одному кубиту выполнять два вычисления одновременно, а когда два кубита связаны друг с другом посредством такого квантового эффекта, как запутанность, они могут выполнять уже 22, то есть 4 вычисления одновременно; три кубита способны на 23, или восемь вычислений; и так далее. В принципе, квантовый компьютер с 300 кубитами смог бы выполнять столько вычислений одновременно, что их количество превзошло бы количество имеющихся во Вселенной атомов.
Читать дальше →
Total votes 14: ↑11 and ↓3+17
Comments18

Что может квантовый компьютер

Reading time12 min
Views31K
Квантовая физика родилась в 1900 году, когда Макс Планк предположил, что энергия поглощается не непрерывно, а отдельными порциями — квантами. Его идея получила дальнейшее развитие: фотоэлектрический эффект Эйнштейна, теория атома Бора, Резерфорд опытным путем показал, как выглядит ядро атома, Луи де Бройль стер границу между волнами и материей, Гейзенберг и Шрёдингер разработали квантовую механику.

Квантовую физику тяжело понять — её математический аппарат почти невозможно перевести на «человеческий» язык. Но «потрогать» её проявления в повседневной жизни вполне реально: лазеры, флэшки, компакт-диски, интегральные схемы или графен — все эти технологии появились благодаря квантовой физике. Логично, что ее решили использовать и для вычислений — в квантовых компьютерах.

Квантовые компьютеры кардинально отличаются от обычных: они обрабатывают информацию на порядок быстрее, а памяти у них больше экспоненциально. Уже сейчас экспериментальные образцы решают некоторые задачи быстрее, чем самые мощные суперкомпьютеры. Перспективы от внедрения квантовых компьютеров манят. С их помощью можно создать новые лекарства, композитные материалы прочнее титана и легче пластика, сверхпроводники, которые работают при комнатной температуре, добиться абсолютной безопасности шифрования или разработать универсальный искусственный интеллект. Но в реальности всё не так радужно. Всё потому, что мы пока не понимаем, что действительно умеет квантовый компьютер.


Анатолий Дымарский (Сколтех) — физик-теоретик, работает в области физики квантовых систем. Анатолий расскажет, чем квантовый компьютер отличается от обычного и что сулят его возможности IT-индустрии.
Total votes 21: ↑18 and ↓3+25
Comments10

РКЦ: квантовый компьютер и блокчейн. Наука России и ее ученые

Reading time5 min
Views5.9K

Я пришла в Российский квантовый центр пообщаться с Алексеем Федоровым – создателем квантового блокчейна и руководителем одной из научных групп. Мне открылась новая реальность: молодые сильные российские ученые, которые работают над технологией будущего на мировом уровне.


А вы знали, что в России уже есть продукты, работающие на квантовых технологиях? А что квантовые компьютеры уже существуют, в том числе и в России? Что любой желающий может запрограммировать настоящий квантовый компьютер онлайн на специальном языке программирования?


Если нет, заходите, будет интересно.

Total votes 6: ↑5 and ↓1+6
Comments6

Julia и квантовые вычисления

Reading time11 min
Views5.7K


Мы представляем Yao (статья), пакет с открытым исходным кодом Julia для решения практических задач в исследованиях квантовых вычислений. Имя Yao происходит от первого китайского иероглифа, означающего унитарность (幺正).

Читать дальше →
Total votes 7: ↑7 and ↓0+7
Comments3

MIP* = RE: эпохальное доказательство из сферы компьютерной науки, которое вызвало эффект домино в физике и математике

Reading time15 min
Views20K
Учёные-информатики вышли на новые рубежи в деле проверки решений задач вычислительными методами. При этом они нашли ответы на важнейшие открытые вопросы квантовой механики и чистой математики.

В 1935 году Альберт Эйнштейн, работая с Борисом Подольским и Натаном Розеном, исследовал возможность, открытую новыми законами квантовой физики: две частицы могут находиться в запутанном состоянии, когда их взаимосвязь не нарушают даже огромные расстояния.



В следующем году Алан Тьюринг сформулировал первую общую теорию вычислений, и доказал, что существуют задачи, которые никогда не смогут быть решены компьютерами. 

Эти две идеи произвели революцию в тех областях наук, к которым они относятся. Кроме того, казалось, что они не имеют никакого отношения друг к другу. Но теперь доказательство MIP* = RE их скомбинировало, что привело к решению множества задач в сфере информатики, физики и математики.
Читать дальше →
Total votes 37: ↑31 and ↓6+43
Comments20

Россия – мировой центр разработки САПР. Вы об этом знали?

Reading time6 min
Views30K
Российская отрасль инженерного программного обеспечения насчитывает более 50 компаний-разработчиков. По меркам мирового рынка САПР это уже заметная величина. Но знаете ли вы, что российский след есть и в известных западных продуктах, например, в CATIA, BricsCAD, Altium Designer? Многие зарубежные САПР-вендоры открыли в России свои R&D центры или сотрудничают с местными аутсорсинговыми компаниями. Кто они – узнаем под катом.

image
Читать дальше →
Total votes 23: ↑22 and ↓1+21
Comments26

Сократить время вычислений от нескольких лет до минут. Разбираемся с квантовым машинным обучением

Reading time9 min
Views10K
Я давно интересуюсь квантовыми вычислениями и пишу программы для 5- и 14-кубитных квантовых компьютеров IBM Q Experience. Сегодня я расскажу о технологиях, которые можно будет применять в машинном обучении после того, как квантовые вычисления завоюют мир. Спойлер для дата сайентистов: в будущем у вас не получится запустить модель и уйти пить кофе на полдня. Квантовый компьютер щелкает задачи машинного обучения на раз, и отговорки вроде “модель обучается” уже не пройдут. Придется запускать не одну модель, а по меньшей мере миллион.

image
Читать дальше →
Total votes 34: ↑24 and ↓10+14
Comments48

Новое решение парадокса Ферми (почему мы одиноки во Вселенной)

Reading time4 min
Views65K
Недавно мне пришло в голову совершенно новое решение Парадокса Ферми. Я не буду пересказывать то, что вы можете прочитать в Вики.



Перейду к сути. Для решения проблемы нам понадобятся несколько ингредиентов.
Читать дальше →
Total votes 79: ↑63 and ↓16+47
Comments499

Почему вам стоит использовать язык Ада для программирования вашей системы

Reading time6 min
Views25K


Язык программирования Ада родился в середине 1970-х, когда министерство обороны США и министерство обороны Британии решили заменить сотни специализированных языков программирования для встроенных вычислительных систем, всё чаще использовавшихся в военных проектах. Язык Ада разрабатывали так, чтобы это был единственный язык, способный работать на всех этих встроенных системах, и при этом обеспечивавший надёжность и быстродействие уровнем не хуже специализированных.

После обновления от 1995 года язык приспособили для систем общего назначения, добавив объектно-ориентированное программирование, не теряя из вида ключевые ценности – надёжность, простоту поддержки и эффективность. Сегодня написанное на Ада ПО формирует основу не только военного оборудования, но и коммерческих проектов в сфере авионики и систем управления воздушным трафиком. Код на Ада управляет такими ракетами, как Ариан-4 и 5, многими спутниками, и бесчисленным количеством других систем, в которых небольшие сбои могут иметь серьёзные последствия.

Возможно, Ада подойдёт и для использования в вашем следующем встроенном проекте.
Читать дальше →
Total votes 48: ↑44 and ↓4+40
Comments22

Первый в России прототип квантового компьютера заработал в НИТУ «МИСиС»

Reading time4 min
Views19K
В НИТУ «МИСиС» заработал первый в России прототип квантового компьютера. Устройство на двух кубитах выполнило квантовый алгоритм Гровера, превысив ранее известный предел точности на 3%. В качестве основы для кубитов были взяты сверхпроводящие материалы.

1

Криостат квантового компьютера, собранного в НИТУ «МИСиС».

Читать дальше →
Total votes 54: ↑52 and ↓2+50
Comments68

Information

Rating
Does not participate
Location
Санкт-Петербург, Санкт-Петербург и область, Россия
Registered
Activity