Как HTTPS обеспечивает безопасность соединения: что должен знать каждый Web-разработчик

перевод
zavg 29 июля 2013 в 11:51 220k
Оригинал: Hartley Brody


Как же все-таки работает HTTPS? Это вопрос, над которым я бился несколько дней в своем рабочем проекте.

Будучи Web-разработчиком, я понимал, что использование HTTPS для защиты пользовательских данных – это очень и очень хорошая идея, но у меня никогда не было кристального понимания, как HTTPS на самом деле устроен.

Как данные защищаются? Как клиент и сервер могут установить безопасное соединение, если кто-то уже прослушивает их канал? Что такое сертификат безопасности и почему я должен кому-то платить, чтобы получить его?

Трубопровод


Перед тем как мы погрузимся в то, как это работает, давайте коротко поговорим о том, почему так важно защищать Интернет-соединения и от чего защищает HTTPS.

Когда браузер делает запрос к Вашему любимому веб-сайту, этот запрос должен пройти через множество различных сетей, любая из которых может быть потенциально использована для прослушивания или для вмешательства в установленное соединение.



С вашего собственного компьютера на другие компьютеры вашей локальной сети, через роутеры и свитчи, через вашего провайдера и через множество других промежуточных провайдеров – огромное количество организаций ретранслирует ваши данные. Если злоумышленник окажется хотя бы в одной из них — у него есть возможность посмотреть, какие данные передаются.

Как правило, запросы передаются посредством обычного HTTP, в котором и запрос клиента, и ответ сервера передаются в открытом виде. И есть множество весомых аргументов, почему HTTP не использует шифрование по умолчанию:

• Для этого требуется больше вычислительных мощностей
• Передается больше данных
• Нельзя использовать кеширование

Но в некоторых случаях, когда по каналу связи передается исключительно важная информация (такая как, пароли или данные кредитных карт), необходимо обеспечить дополнительные меры, предотвращающие прослушивание таких соединений.

Transport Layer Security (TLS)


Сейчас мы собираемся погрузиться в мир криптографии, но нам не потребуется для этого какого-то особенного опыта — мы рассмотрим только самые общие вопросы. Итак, криптография позволяет защитить соединение от потенциальных злоумышленников, которые хотят воздействовать на соединение или просто прослушивать его.

TLS — наследник SSL — это такой протокол, наиболее часто применяемый для обеспечения безопасного HTTP соединения (так называемого HTTPS). TLS расположен на уровень ниже протокола HTTP в модели OSI. Объясняя на пальцах, это означает, что в процессе выполнения запроса сперва происходят все “вещи”, связанные с TLS-соединением и уже потом, все что связано с HTTP-соединением.

TLS – гибридная криптографическая система. Это означает, что она использует несколько криптографических подходов, которые мы и рассмотрим далее:

1) Асиметричное шифрование (криптосистема с открытым ключом) для генерации общего секретного ключа и аутентификации (то есть удостоверения в том, что вы – тот за кого себя выдаете).
2) Симметричное шифрование, использующее секретный ключ для дальнейшего шифрования запросов и ответов.

Криптосистема с открытым ключом


Криптосистема с открытым ключом – это разновидность криптографической системы, когда у каждой стороны есть и открытый, и закрытый ключ, математически связанные между собой. Открытый ключ используется для шифрования текста сообщения в “тарабарщину”, в то время как закрытый ключ используется для дешифрования и получения исходного текста.

С тех пор как сообщение было зашифровано с помощью открытого ключа, оно может быть расшифровано только соответствующим ему закрытым ключом. Ни один из ключей не может выполнять обе функции. Открытый ключ публикуется в открытом доступе без риска подвергнуть систему угрозам, но закрытый ключ не должен попасть к кому-либо, не имеющему прав на дешифровку данных. Итак, мы имеем ключи – открытый и закрытый. Одним из наиболее впечатляющих достоинств ассиметричного шифрования является то, что две стороны, ранее совершенно не знающие друг друга, могут установить защищенное соединение, изначально обмениваясь данными по открытому, незащищенному соединению.
Клиент и сервер используют свои собственные закрытые ключи (каждый – свой) и опубликованный открытый ключ для создания общего секретного ключа на сессию.

Это означает, что если кто-нибудь находится между клиентом и сервером и наблюдает за соединением – он все равно не сможет узнать ни закрытый ключ клиента, ни закрытый ключ сервера, ни секретный ключ сессии.

Как это возможно? Математика!

Алгоритм Ди́ффи — Хе́ллмана


Одним из наиболее распространенных подходов является алгоритм обмена ключами Ди́ффи — Хе́ллмана (DH). Этот алгоритм позволяет клиенту и серверу договориться по поводу общего секретного ключа, без необходимости передачи секретного ключа по соединению. Таким образом, злоумышленники, прослушивающие канал, не смогу определить секретный ключ, даже если они будут перехватывать все пакеты данных без исключения.

Как только произошел обмен ключами по DH-алгоритму, полученный секретный ключ может использоваться для шифрования дальнейшего соединения в рамках данной сессии, используя намного более простое симметричное шифрование.

Немного математики…


Математические функции, лежащие в основе этого алгоритма, имею важную отличительную особенность — они относительно просто вычисляются в прямом направлении, но практически не вычисляются в обратном. Это именно та область, где в игру вступают очень большие простые числа.

Пусть Алиса и Боб – две стороны, осуществляющие обмен ключами по DH-алгоритму. Сперва они договариваются о некотором основании root (обычно маленьком числе, таком как 2,3 или 5 ) и об очень большом простом числе prime (больше чем 300 цифр). Оба значения пересылаются в открытом виде по каналу связи, без угрозы компрометировать соединение.

Напомним, что и у Алисы, и у Боба есть собственные закрытые ключи (из более чем 100 цифр), которые никогда не передаются по каналам связи.

По каналу связи же передается смесь mixture, полученная из закрытых ключей, а также значений prime и root.

Таким образом:
Alice’s mixture = (root ^ Alice’s Secret) % prime
Bob’s mixture = (root ^ Bob’s Secret) % prime
где % — остаток от деления

Таким образом, Алиса создает свою смесь mixture на основе утвержденных значений констант (root и prime), Боб делает то же самое. Как только они получили значения mixture друг друга, они производят дополнительные математические операции для получения закрытого ключа сессии. А именно:

Вычисления Алисы
(Bob’s mixture ^ Alice’s Secret) % prime

Вычисления Боба
(Alice’s mixture ^ Bob’s Secret) % prime

Результатом этих операций является одно и то же число, как для Алисы, так и для Боба, и это число и становится закрытым ключом на данную сессию. Обратите внимание, что ни одна из сторон не должна была пересылать свой закрытый ключ по каналу связи, и полученный секретный ключ так же не передавался по открытому соединению. Великолепно!

Для тех, кто меньше подкован в математическом плане, Wikipedia дает прекрасную картинку, объясняющую данный процесс на примере смешивания цветов:

image

Обратите внимание как начальный цвет (желтый) в итоге превращается в один и тот же “смешанный” цвет и у Боба, и у Алисы. Единственное, что передается по открытому каналу связи так это наполовину смешанные цвета, на самом деле бессмысленные для любого прослушивающего канал связи.

Симметричное шифрование


Обмен ключами происходит всего один раз за сессию, во время установления соединения. Когда же стороны уже договорились о секретном ключе, клиент-серверное взаимодействие происходит с помощью симметричного шифрования, которое намного эффективнее для передачи информации, поскольку не требуется дополнительные издержки на подтверждения.

Используя секретный ключ, полученный ранее, а также договорившись по поводу режима шифрования, клиент и сервер могут безопасно обмениваться данными, шифруя и дешифруя сообщения, полученные друг от друга с использованием секретного ключа. Злоумышленник, подключившийся каналу, будет видеть лишь “мусор”, гуляющий по сети взад-вперед.

Аутентификация


Алгоритм Диффи-Хеллмана позволяет двум сторонам получить закрытый секретный ключ. Но откуда обе стороны могут уверены, что разговаривают действительно друг с другом? Мы еще не говорили об аутентификации.

Что если я позвоню своему приятелю, мы осуществим DH-обмен ключами, но вдруг окажется, что мой звонок был перехвачен и на самом деле я общался с кем-то другим?! Я по прежнему смогу безопасно общаться с этим человеком – никто больше не сможет нас прослушать – но это будет совсем не тот, с кем я думаю, что общаюсь. Это не слишком безопасно!

Для решения проблемы аутентификации, нам нужна Инфраструктура открытых ключей, позволяющая быть уверенным, что субъекты являются теми за кого себя выдают. Эта инфраструктура создана для создания, управления, распространения и отзыва цифровых сертификатов. Сертификаты – это те раздражающие штуки, за которые нужно платить, чтобы сайт работал по HTTPS.

Но, на самом деле, что это за сертификат, и как он предоставляет нам безопасность?

Сертификаты


В самом грубом приближении, цифровой сертификат – это файл, использующий электронной-цифровую подпись (подробнее об этом через минуту) и связывающий открытый (публичный) ключ компьютера с его принадлежностью. Цифровая подпись на сертификате означает, что некто удостоверяет тот факт, что данный открытый ключ принадлежит определенному лицу или организации.

По сути, сертификаты связывают доменные имена с определенным публичным ключом. Это предотвращает возможность того, что злоумышленник предоставит свой публичный ключ, выдавая себя за сервер, к которому обращается клиент.

В примере с телефоном, приведенном выше, хакер может попытаться предъявить мне свой публичный ключ, выдавая себя за моего друга – но подпись на его сертификате не будет принадлежать тому, кому я доверяю.

Чтобы сертификату доверял любой веб-браузер, он должен быть подписан аккредитованным удостоверяющим центром (центром сертификации, Certificate Authority, CA). CA – это компании, выполняющие ручную проверку, того что лицо, пытающееся получить сертификат, удовлетворяет следующим двум условиям:

1. является реально существующим;
2. имеет доступ к домену, сертификат для которого оно пытается получить.

Как только CA удостоверяется в том, что заявитель – реальный и он реально контролирует домен, CA подписывает сертификат для этого сайта, по сути, устанавливая штамп подтверждения на том факте, что публичный ключ сайта действительно принадлежит ему и ему можно доверять.

В ваш браузер уже изначально предзагружен список аккредитованных CA. Если сервер возвращает сертификат, не подписанный аккредитованным CA, то появится большое красное предупреждение. В противном случае, каждый мог бы подписывать фиктивные сертификаты.

image

Так что даже если хакер взял открытый ключ своего сервера и сгенерировал цифровой сертификат, подтверждающий что этот публичный ключ, ассоциирован с сайтом facebook.com, браузер не поверит в это, поскольку сертификат не подписан аккредитованным CA.

Прочие вещи которые нужно знать о сертификатах


Расширенная валидация

В дополнение к обычным X.509 сертификатам, существуют Extended validation сертификаты, обеспечивающие более высокий уровень доверия. Выдавая такой сертификат, CA совершает еще больше проверок в отношении лица, получающего сертификат (обычно используя паспортные данные или счета).

При получение такого сертификата, браузер отображает в адресной строке зеленую плашку, в дополнение к обычной иконке с замочком.

Обслуживание множества веб-сайтов на одном сервере

Поскольку обмен данными по протоколу TLS происходит еще до начала HTTP соединения, могут возникать проблемы в случае, если несколько веб-сайтов расположены на одном и том же веб-сервере, по тому же IP-адресу. Роутинг виртуальных хостов осуществляется веб-сервером, но TLS-соединение возникает еще раньше. Единый сертификат на весь сервер будет использоваться при запросе к любому сайту, расположенному на сервере, что может вызвать проблемы на серверах с множеством хостов.

Если вы пользуетесь услугами веб-хостинга, то скорее всего вам потребуется приобрести выделенный IP-адрес, для того чтобы вы могли использовать у себя HTTPS. В противном случае вам придется постоянно получать новые сертификаты (и верифицировать их) при каждом обновлении сайта.

По этой теме много данных есть в википедии, есть курс на Coursera. Отдельное спасибо ребятам из чата на security.stackexchange.com, которые отвечали на мои вопросы сегодня утром.

Примечания переводчика:

1)Спасибо хабраюзеру wowkin за отличную ссылку по теме (видео переведено и озвученно хабраюзером freetonik):



2) По результатам развернувшейся в коменатариях дискуссии (спасибо за участие хабраюзерам a5b, Foggy4 и Allen) дополняю основную статью следующей информацией:

По данным netcraft на базе свежего SSL survey (2.4 млн SSL сайтов, июнь 2013), большинство SSL соединений не используют Perfect forward secrecy алгоритмы: news.netcraft.com/archives/2013/06/25/ssl-intercepted-today-decrypted-tomorrow.html

Особенно ситуация плоха в случае с IE (даже 10 версии), который поддерживает Диффи-Хеллмана только на эллиптических кривых (RSA и ECDSA сертификаты), либо классический Диффи-Хеллман с более редкими сертификатами DSS (DSA).
По подсчетам netcraft 99,7 % соединений с IE и по 66% — с Chrome, Opera и Firefox не будут использовать Диффи-Хеллмана.

На Hacker News в обсуждении это тоже заметили.

Also (and I made the same mistake in my talk...), yes, explaining DH is important, but now it kind of sounds like in TLS both sides figure out the master secret using DH (and, in your talk, specifically, regular DH, not EC-based DH), when in reality that depends on the ciphersuite, and the vast majority of TLS connections don't work that way. From what I understand to be most TLS configurations in the wild, the pre-master secret is encrypted using the server's public key. (RFC 5246: 7.4.7.1, 8.1.1)
это важно и интересно, но не все понимают что он в реальности применяется не так часто. В большинстве сеансов SSL и TLS действительно обмен ключей происходит путем их шифрования с помощью RSA.
Проголосовать:
+153
Сохранить: